
ANNEXE 5 Notice hydraulique

DISTILLERIE BOINAUD

SITE D'ANGEAC-CHAMPAGNE NOTICE HYDRAULIQUE

Version du : 28/05/2019

N° Rapport : E61B2_19_446

DOMAINE BOINAUD

140 rue de la Bonne Chauffe 16 130 ANGEAC-CHAMPAGNE

Contact: Madame RAYNAUD Corinne

Tel: 05 45 83 72 72

Email: corinne.raynaud@boinaud.com

SOCOTEC ENVIRONNEMENT

Environnement & Sécurité Bordeaux 6, Impasse Henry Le Châtelier - CS 40044 33692 MERIGNAC Cedex

Contact : Emeline SEITE

Tel: +33 (0)5 57 53 50 00 - +33 (0)6 25 72 48 23

Email: emeline.seite@socotec.com

SOMMAIRE

1. OBJECTIF DE L'ETUDE	а
2. DESCRIPTION DU SITE	4
2.1. ETAT EXISTANT 2.2. SITUATION FUTURE	4 7
3. DIMENSIONNEMENT	8
3.1. DEBIT DE FUITE DES EAUX PLUVIALES AVANT PROJET 3.2. CALCUL DU VOLUME DU BASSIN, APRES PROJET	8

1. OBJECTIF DE L'ETUDE

La Distillerie BOINAUD, implantée à Angéac-Champagne, est soumise à autorisation au titre des Installations Classées pour la Protection de l'Environnement (ICPE).

Le site envisage les modifications suivantes :

- Création de 6 nouveaux chais, d'une superficie unitaire de 3000 m² environ,
- Déplacement du Biossent et du stockage de bois biossent,
- · Extension du parking du personnel,
- La modification des bâtiments déjà existants.

L'objectif du présent rapport est de calculer le volume nécessaire pour l'infiltration des eaux pluviales, en tenant compte de l'augmentation de la surface imperméabilisée du site, dans le cadre de ce projet.

2. DESCRIPTION DU SITE

2.1. Etat existant

Nous avons considéré les parcelles cadastrales suivantes, section A :

Numéro de parcelle	Superficie (m²)	
207	4498	Ī
208	3945	
211	7030	
212	590	
213	3020	
214	3145	
215	1445	
216	3460	
217	4378	
218	2685	7
328	51450	1
366	5639	i
378	7624	ij
396	21555	j
397	1583	П
420	177	ti
422	114	
432	11040	Ī
435	250	
439	1680	7
441	3930	
450	9171	ÿ
455	9161	
457	15291	
470	250	
471	2050	
485	29159	Ť,
488	5090	

Le plan ci-dessous présente l'extrait cadastral du périmètre étudié.

La vue aérienne du site est présentée ci-dessous (source : Géoportail)

La répartition actuelle des surfaces est la suivante :

	Répartition des surfaces - situation existante	
	Surface totale (m²)	Coefficient d'imperméabilisation
Bâtiment + Voirie	62 820	0,9
Espaces verts	146 590	0,2
TOTAL	209 410	0,41

2.2. Situation future

La situation projetée prend en compte :

- La création de 6 nouveaux chais, d'une superficie unitaire de 3000 m² environ,
- · Le déplacement du Biossent et du stockage de bois biossent,
- · L'extension du parking du personnel,
- La modification des bâtiments déjà existants.

La répartition des surfaces sera la suivante :

	Répartition des surfaces - situation future	
	Surface totale (m²)	Coefficient d'imperméabilisation
Bâtiment	119 497	0,9
Espaces verts	89 913	0,2
TOTAL	209 410	0,6

3. DIMENSIONNEMENT

3.1. Débit de fuite des eaux pluviales avant projet

La méthode de calcul utilisée est la méthode dite « rationnelle ».Ce calcul reprend le coefficient de ruissellement moyen à l'état existant, la surface des terrains ainsi que l'intensité de la pluie qui dépend des coefficients de Montana, selon la formule suivante :

$$Q_f = (C_e \times I \times A) / 360$$

Avec: Qf: débit de fuite (m3/s)

Ce : coefficient de ruissellement moyen à l'état existant

A : Surface (ha)

l : intensité de pluie (mm/h)

Le tableau ci-dessous présente le débit de fuite des eaux pluviales du site, avant-projet, pour un temps de retour de 10 ans :

Temps de retour (an) : 10 ans	
a (mm/h)	10,09
b>0	0,753
S : superficie (km²)	0,20941
P : pente (%)	0,01
C : coefficient de ruissellement	0,41
tc maxi : temps de concentration (h)	11,5
l(tc,T) : intensité (mm/h)	1,6
Q(T) : débit de ruissellement (m³/s)	0,038

3.2. Calcul du volume du bassin, après projet

La méthode utilisée ci-après est « la méthode des pluies ou des volumes ».

La méthode suppose :

- que le débit de fuite de l'ouvrage de stockage est supposé constant,
- qu'il y a transfert instantané de la pluie à l'ouvrage de retenue, c'est-à-dire que les phénomènes d'amortissement dus au ruissellement sur le bassin sont négligés.
- que les évènements pluvieux sont indépendants, ceci signifie que lors des dépouillements, les périodes de temps sec ne sont pas prises en compte.

Le tableau ci-dessous présente les hypothèses :

Temps de retour (an) : 10 ans	th service of
S : superficie (m²)	209 410
Coefficient de ruissellement	0,6
Rejet autorisé (l/s)	38
Valeur retenue = débit de ruissellement calculé avant projet	

Calcul du débit spécifique (Qs)

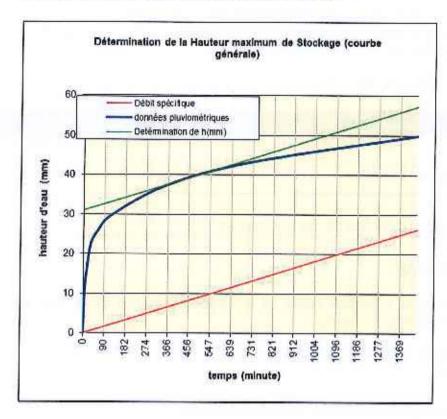
A partir du débit de fuite et de la surface active, on détermine le débit spécifique (Qs) ou hauteur équivalente. On applique la formule suivante :

360 x Débit de fuite (m³/s) = Débit spécifique (mm/h) Surface active (ha)

Détermination de la période de retour de la pluie de référence

Pour la méthode des Volumes nous prenons les coefficients de Montana donnés par la station météorologique de Cognac pour une période de retour de 10 ans.

La formule de Montana $h(t) = a \times t(^{1-b)}$ permet de modéliser de manière théorique une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux sur une durée (t).


Pour le cas présent nous obtenons les données suivantes :

Données METEOFRANCE COGNAC	
durée en minute	hauteur cumulée (mm)
0	0
6	11
15	16
30	22
60	26
120	30
360	37
720	43
1440	50

Calcul de la hauteur maximale de stockage

On détermine la hauteur maximale de stockage à partir de la formule suivante :

Hauteur cumulée (tableau de relevé Météo France) + Débit spécifique (qs) = Courbe (Hauteur d'eau en fonction du Temps).

On détermine la hauteur maximum de stockage qui soit au plus proche de la courbe «données pluviométrique».

Calcul de la hauteur de stockage

On calcule le volume à stocker par la formule :

V = 10 x Ha x Sa

Ha : Hauteur d'eau (mm) Sa : Surface active (ha)

V : Volume d'eau à stocker (m3).

Le volume à stocker ainsi calculé est de 3895 m3.

